

The Pykarbon Project

The Pykarbon module provides a set of tools for interfacing with hardware devices on
OnLogic’s ‘Karbon’ series rugged PCs. These interfaces include the onboard CAN bus,
Digital IO, automotive features, and a few other hardware devices. There are several benefits to leveraging Pykarbon:

	You can start testing and developing right out of the box – setting up a Karbon with Pykarbon and sending some test messages over CAN takes only a couple of minutes.

	High level interface offers powerful tools that can be immediately applied to a broad variety of problems.

	Low level hardware access layer gives developers granular control when they need it.

	Abstracts complex hardware controls into simplified interfaces.

	Free and open; Pykarbon can be downloaded, modified, and used in any application.

The ultimate goal of this package is to provide a simple, but powerful, base platform that will allow
for the quick and easy integration of a Karbon system into a variety of applications.

To get started, see the rest of the documentation:

	Intro
	Pykarbon: Hardware Made Possible

	Automatic Operation

	The Toolbox

	Quickstart
	Prerequisites

	Installation

	Usage

	API
	pykarbon

	core

	can

	terminal

	i2c

	hardware

Intro

Pykarbon: Hardware Made Possible

The Pykarbon module provides a set of tools for interfacing with the hardware devices on
OnLogics’s ‘Karbon’ series industrial PCs. These interfaces include the onboard CAN bus,
Digital IO, and a few other hardware devices.

The goal of this package is to provide a simple, but powerful, base platform that will allow
you to quickly and easily integrate a Karbon into your own application.

Automatic Operation

Getting started with Pykarbon doesn’t take a lot of code; many use-cases can be handled in only five lines:

import pykarbon.pykarbon as pk

with pk.Karbon() as dev:
 dev.write() # Your commands here
 dev.can.data
 dev.terminal.data

This command automatically discovers and prepares your system’s hardware interfaces by performing several tasks:

	Discovers the two COM ports owned by your Karbon’s microcontroller

	Opens a connection with both ports, and acquires a lock

	Starts background threads for monitoring and processing incoming data

	Attempts to detect the baudrate of connected CAN devices

	Reads configuration information about your microcontroller

All of that setup happens in the background and, once complete, you are free to access configuration settings, the CAN interface, digital IO, and so on.
When the context session ends, the connection will be automatically cleaned up, and the interfaces closed.

The Toolbox

Pykarbon offers several modules that grant different levels of access to the hardware. These include:

pykarbon

This is the highest level module. Its single ‘Karbon’ class creates a control object that you can
use to write to both the Karbon system’s serial terminal and CAN port. It also starts background monitoring
on both of those ports, and allows you to access any data streamed to either port from their
respective data queues. In most cases, the best way to use this module is as a command line
controller for your hardware.

core

This core module provides access to basic commands in a blocking, low-overhead, way.
It is able sniff packets on the CAN bus, read back user configuration information, and toggle digital IO.

terminal & can

The terminal and can modules hold the tools for creating, controlling and monitoring their
respective virtual terminals. They also allow you to disable automatic background monitoring, and
take control of reads and writes in a very direct way.

These modules also provide a “reaction” class that may be subclassed in order to generate your own,
custom, responses to bus events. Reactions have the built-in ability to respond over the port they are
using, and they will automatically execute your self-defined callback function.
This means that you can register any python function to be called when a certain message is detected on the bus.

hardware

The low-level access layer takes care of discovering and claiming ports, and offers an object with
read and write methods. Developers that want fine-grain control over how their system operates, or
who just don’t need any bells and whistles, can use this module as a launching point.

Quickstart

Prerequisites

Before running through this guide, make sure you have these things ready:

	A Karbon_ series computer.

	Python 3 [https://www.python.org/downloads/] downloaded and installed on the system.

	Be sure to add Python to your path if installing on Windows

	An internet connection on the target Karbon.

Installation

Installing Pykarbon is as simple as opening up a terminal and running:

> pip install pykarbon --user

or, in Ubuntu:

$ python3 -m pip install pykarbon --user

Usage

Launch a Python REPL in your terminal with python in Windows or sudo python3
in Ubuntu. Now you’re just a few commands away from talking with your hardware:

Import the module
import pykarbon.core as pkcore

Open a terminal session and print out your firmware version
with pkcore.Terminal() as dev:
 dev.print_command('version')

Open an can session and start listening for packets
with pkcore.Can() as dev:
 dev.sniff()

In the example above, we used core as a simple, and basic, interface tool. More
advanced and useful features can be found by using the dedicated can and
terminal modules. You can read more about them, and see some examples in the API.

API

pykarbon

Pykarbon is designed to wrap interfacing with the microntroller on the Karbon series in an object,
with the explicit goal of being able to treat this object in a more pythonic manner. In this manner
most serial interactions with carbon are greatly simplified, and are more versatile.

Note

pykarbon.pykarbon’s only class, Karbon, will claim and use both microntroller
interfaces. Addtionally, the full featuresets of both pykarbon.terminal.Session and
pykarbon.can.Session are accessable via Karbon.terminal and
Karbon.can respectively

Example

import pykarbon.pykarbon as pk

with pk.Karbon() as dev:
 dev.write(0x123, 0x11223344) # Send a message over the can interface
 dev.can.data # List of receive can messages

 # Karbon.write uses input length and types to determine what action to perform!
 dev.write(0, '1') # Set digital output zero high

	
class pykarbon.pykarbon.Karbon(automon=True, timeout=0.01, baudrate=None)

	Handles interactions with both virtual serial ports.

When initialized, this will scan the systems COM ports for the expected hardware/product id.
The ports reporting this id are then attached to the class for easy recall and access.

	
can

	A pykarbon.can session object – used to interface with karbon can bus

	
terminal

	a pykarbon.terminal session object – used to interface with karbon terminal.

	
autobaud(baudrate: int) → str

	Autodetect the bus baudrate

If the passed argument ‘baudrate’ is None, the baudrate will be autodetected,
otherwise, the bus baudrate will be set to the passed value.

	Parameters

	baudrate – The baudrate of the bus in thousands. Set to ‘None’ to autodetect

	Returns

	The discovered or set baudrate

	
close()

	Close both ports

	
open()

	Opens both ports: Only needs to be called if ‘close’ has been called

	
read(port_name='terminal', print_output=False)

	Get the next line sent from a port

	Parameters

	
	port_name (str, optional) – Will read from CAN if ‘can’ is in the port name.
Reads from the terminal port by default.

	print_output (bool, optional) – Set to false to not print read line

	Returns

	Raw string of the line read from the port

	
show_info()

	Updates and prints configuration information

	
write(*args)

	Takes a command input and interperets it into a serial task:

If given two integer args, it will send a CAN message. If given two string args, it
will set a terminal parameter. If given an integer as the first arg, and a str as the
second arg, it will attempt to set the corrospponding digital output.

A single string argument will simply be sent to the terminal.

	Returns

	None

core

A set of core functions for when you don’t need anything fancy.

Examples

Print firmware version:

import pykarbon.core as pkcore

with pkcore.Terminal() as dev:
 dev.print_command('version')

Read can messages:

import pykarbon.core as pkcore

with pkcore.Can() as dev:
 dev.sniff()

Note

The two exposed classes, Terminal and Can, may be used within context
managers, but are also able to use inhereted methods from pykarbon.hardware.Interface
to claim and release ports. This can be usefull when you want to use a port for the duration
of your application.

Example:

import pykarbon.core as pkcore:

dev = pkcore.Terminal()
dev.claim()

dev.set_high(0) # Set digital output zero high

Some code here, occasionally using device

dev.set_low(0) # Return digital output zero to low state
dev.release()

	
class pykarbon.core.Can

	Exposes methods for blocking read/write control of the serial terminal

pykarbon.core.Can is a subclass of pykarbon.hardware.Interface(‘can’, timeout=.01). It does not
log and monitor bus events in background, and logging messages is a blocking task. However, it
can be very usefull when you are simply trying to diagnose or monitor bus messages.

	Parameters

	messages (list) – List of read messages

	
send(data_id, data, length=None)

	Send a can message.

Message properties will be inferred from id and data.

	Parameters

	
	data_id (int) – Hex value data id. If it is larger that 0x7FF, the message
will be transmitted as CAN 2.0B (extended) format

	data (int) – Hex valued data. Message length will be dervived from this. If the
data is None, a remote request frame will be sent instead.

	length (int) – Length in bytes of expected message, should be specified for remote.

	
sniff()

	Read messages and print, until stopped. Messages will be saved

Additionally logs time delta between received messages, alongside id and data.
Outputs are additionally saved in dictionary format to self.messages, in the order
that they are recieved.

	
class pykarbon.core.Terminal(timeout=0.05, max_poll=100)

	Exposes methods for blocking read/write control of the serial terminal

pykarbon.core.Terminal is a subclass of pykarbon.hardware.Interface(‘terminal’, timeout=.01).
It uses a simplified, blocking, method for reading device information and setting digital
output states. Digital input events will not be automatically logged, so a polling approach
should be implemented while waiting for an input event.

	Parameters

	
	timeout (float, optional) – The maximum amount of time, in seconds, that functions will
block while waiting for a response.

	max_poll (int, optional) – The hard maximum on number of times the system will poll with
receiving any response. Puts a hard-cap on timeout.

	
voltage

	The last read system voltage, initialized to 0

	Type

	float

	
cleanout()

	Flush the input buffer, discarding the contents

	
command(command)

	Writes a literal command and returns the result

	Parameters

	command (str) – String that will be written to the serial terminal

	
get_state(pin)

	Returns the current state of a given digital input,
updates only that state.

	Parameters

	pin (int) – 0-3, the digital input to read

	
grepall(expression, default=None)

	Calls readall and returns the first output of a re.search of the output.

	Parameters

	
	expression (str) – The regular expression to match against

	default (optional) – What to return if findall fails, default None

	
input_states()

	Returns the current state of every single input,
and updates all stored states

	
print_command(command)

	Calls ‘command’ and prints the output

	
readall(container)

	Read lines until they stop coming, and save them into a container

	Parameters

	container (list) – List that each line of response will be appended to. It is both
passed in and returned so it can be pre-loaded.

	
set_high(pin)

	Sets the given digital output high

	Parameters

	pin (int) – 0-3, the index of digital output to set high.

	
set_low(pin)

	Sets the given digital output low

	Parameters

	pin (int) – 0-3, the index of digital output to set low.

	
update_voltage()

	Reads updated voltage and parses it into a float

can

Tool for running a session with the can interface.

Example

import pykarbon.can as pkc
from time import sleep

with pkc.Session() as dev:
 dev.write(0x123, 0x11223344) # Send a message

 sleep(5) # Your code here!

 dev.storedata('can_messages') # Save messages that we receive while we waited

Lets us autodetect the can bus baudrate, write data to the can bus, wait for some messages to
be receive, and finally save those messages to can_messages.csv

	
class pykarbon.can.Reactions(canwrite, data_id, action, **kwargs)

	A class for performing automated responses to certain can messages.

If the action returns a dict of hex id and data, then the reaction will
automatically respond with this id and data. If the dict has ‘None’ for
id, then the reaction will respond with the originating frame’s id and
then returned data.

Note

Example action response: {‘id’: 0x123, ‘data’: 0x11223344}

	
data_id

	The can data id registered with this reaction

	
action

	Function called by this reaction

	
remote_only

	If the reaction will respond to non-remote request frames

	
run_in_background

	If reaction will run as background thread

	
auto_response

	If reaction will automatically reply

	
canwrite

	Helper to write out can messages

	
bgstart(hex_data)

	Call start as a background thread

	Returns

	The thread of the background action

	
respond(returned_data)

	Automatically respond to frames, if requested

	Parameters

	returned_data – A dict of id and data. If None, no response will be sent

	
start(hex_data)

	Run the action in a blocking manner

	Parameters

	hex_data – The hex data of the message that invoked this reaction.
Should be the string ‘remote’ for remote frames.

	
class pykarbon.can.Session(baudrate='autobaud', timeout=0.01, automon=True, reaction_poll_delay=0.01)

	Attaches to CAN serial port and allows reading/writing from the port.

Automatically performs port discovery on linux and windows. Then is able to take
ownership of a port and perform read/write operations. Also offers an intelligent
method of sending can messages that will automatically determine frame format, type,
and data length based only on the message id and data.

There is additional support for registering a function to certain can data ids. When the
interface receives a registered message, it will call the function and send the returned
data. This features requires running the session with automonitoring enabled.

By default, the session will also try to automatically discover the bus baudrate.

	Parameters

	
	baudrate (int/str, optional) – None -> Disable setting baudrate altogther (use mcu stored value)

’autobaud’ -> Attempt to automatically detect baudrate

100 - 1000 -> Set the baudrate to the input value, in thousands

	timeout (float, optional) – Time until read/write attempts stop in seconds. (None disables)

	automon (bool, optional) – Automatically monitor incoming data in the background.

	reaction_poll_delay (float, optional) – Time between checking received data for a registered
value. Decreasing this delay will consume more unused CPU time.

If the baudrate option is left blank, the device will instead attempt to automatically
detect the baudrate of the can-bus. When ‘automon’ is set to ‘True’, this object will
immediately attempt to claim the CAN connection that it discovers. Assuming the connection
can be claimed, the session will then start monitoring all incoming data in the background.

This data is stored in the the session’s ‘data’ attribute, and can be popped from the queue
using the ‘popdata’ method. Additionally, the entire queue may be purged to a csv file using
the ‘storedata’ method – it is good practice to occasionally purge the queue.

	
interface

	pykarbon.hardware.Interface

	
pre_data

	Data before it has been parsed by the registry service.

	
data

	Queue for holding the data read from the port

	
isopen

	Bool to indicate if the interface is connected

	
baudrate

	Reports the discovered or set baudrate

	
registry

	Dict of registered DIO states and function responses

	
bgmon

	Thread object of the bus background monintor

	
autobaud(baudrate: int) → str

	Autodetect the bus baudrate

If the passed argument ‘baudrate’ is None, the baudrate will be autodetected,
otherwise, the bus baudrate will be set to the passed value.

When attempting to auto-detect baudrate, the system will time-out after 3.5 seconds.

	Parameters

	baudrate – The baudrate of the bus in thousands. Set to ‘None’ to autodetect

	Returns

	The discovered or set baudrate

	
bgmonitor()

	Start monitoring the canbus in the background

Uses python threading module to start the monitoring process.

	Returns

	The ‘thread’ object of this background process

	
check_action(line)

	Check is message has an action attached, and execute if found

	Parameters

	line – Can message formatted as [id] [data]

	
close()

	Release the interface so that other session may interact with it

Any existing background monitor session will also be closed. If this session re-opens the
connection, background monitoring will need to be manually restarted with the ‘bgmonitor’
method.

	
static format_message(id, data, **kwargs)

	Takes an id and data and determines other message characteristics

When keyword arguments are left blank, this function will extrapolate the correct
frame information based on the characteristics of the passed id and data.
If desired, all of the automatically determined characteristics may be overwritten.

	Parameters

	
	data_id – Data id of the message, in hex (0x123, ‘0x123’, ‘123’)

	data – Message data, in hex – if ‘None’, the device will send a remote frame.
NOTE: Use string version of hex to send leading zeroes (‘0x00C2’ or ‘00C2’)

	**kwargs – format: Use standard or extended frame data id (‘std’ or ‘ext’)

length: Length of data to be transmitted, in bytes (11223344 -> 4)

type: Type of frame (‘remote’ or ‘data’)

	
monitor()

	Watches port for can data while connection is open.

The loop is predicated on the connection being open; closing the connection will stop the
monitoring session.

	Parameters

	session – A canbus session object

	Returns

	The method used to stop monitoring. (str)

	
open()

	Claim the interface (only one application may open the serial port)

	
popdata()

	If there is data in the queue, pop an entry and return it.

Uses queue behavior, so data is returned with ‘first in first out’ logic

	Returns

	String of the data read from the port. Returns empty string if the queue is empty

	
pushdata(line: str)

	Add data to the end of the session queue.

NOTE: Strips EoL characters.

	Parameters

	line – Data that will be pushed onto the queue

	
readline()

	Reads a single line from the port, and stores the output in self.data

If no data is read from the port, then nothing is added to the data queue.

	Returns

	The data read from the port

	
register(data_id, action, **kwargs)

	Automatically perform action upon receiving data_id

Register an action that should be automatically performed when a certain data
id is read. By default the action will be performed when the id is attached
to any frame type, and the action’s returned data will be checked – if the data
can be formatted as a can message, it will automatically be transmitted as a reply.

Actions should be a python function, which will be automatically wrapped in a
pykarbon.can.Reactions object by this function. When the passed action is called
Reactions will try to pass it the hex id and data as the first and second positional
arguments. If thrown a TypeError, it will call the action without any arguments.

Example

>>> Session.register(0x123, action)

Note

If the frame is a remote request frame, the passed data will be ‘remote’ instead
of an int!

	Parameters

	
	data_id – The hex data_id that the action will be registered to

	action – The python function that will be performed.

	kwargs – remote_only: Respond only to remote request frames (Default: False)
run_in_background: Run action as background task (Default: True)
auto_response: Automatically reply with returned message (Default: True)

	Returns

	The ‘Reaction’ object that will be used in responses to this data_id

	
registry_service()

	Check if receive line has a registered action.

If the receive line does have an action, perform it, and then move the data
into the main data queue. Otherwise, just move the data.

	
send_can(message) → str

	Transmits the passed message on the canbus

	Parameters

	message – A dictionary containing the data required to build a can message

	Returns

	The string version of the transmitted message

	
storedata(filename: str, mode='a+')

	Pops the entire queue and saves it to a csv.

This method clears the entire queue: once you have called it, all previously received
data will no longer be stored in the sessions ‘data’ attribute. Instead, this data will
now reside in the specified .csv file.

Each received can message has its own line of the format: id,data.

By default, if a file that already exists is specified, the data will append to the end of
this file. This behavior can be changed by setting ‘mode’ to any standard ‘file.write’ mode.

	Parameters

	
	filename – Name of file that will be created.

	mode (str, optional) – The file write mode to be used.

	
write(can_id, data)

	Auto-format and transmit message

For the large majority of use cases, this is the simplest and best method to send a packet
of data over the canbus. Only message id and the data need to specified as hex values. All
other information about the packet will be extrapolated.

	Parameters

	
	can_id – The hex id of the data

	data – The hex formatted data

	
pykarbon.can.hardware_reference(device='K300')

	Print useful hardware information about the device

Displays hardware information about the CAN device, such as pinouts.
Then pinouts assume that the user is facing the front of the device, and that the fins
are pointed up.

	Parameters

	device (str, optional) – The karbon series being used. Defaults to the K300

	
pykarbon.can.hexify(value)

	Takes variously formatted hex values and outputs them as a int

	
pykarbon.can.stringify(value)

	Takes variously formatted hex values and outputs them in simple string format

terminal

Tools for sending commands to the microcontroller, as well as using the DIO

Example

import pykarbon.terminal as pkt

with pkt.Session() as dev:
 dev.update_info(print_info=True) # Update and print configuration info

 dev.set_do(0, True) # Set digital output zero high

This snippet will update and print the microntrollers configuration information, and then set
digital output zero high.

	
class pykarbon.terminal.Reactions(set_all_do, info, action, **kwargs)

	A class for performing automated responses to certain dio transitions.

If the action returns a list digital output states, then the reaction
will set each of these states. If the action returns None, no digital
outputs will be set.

Example

>>> ['0', '1', '1', '0'] # Example action response

Note

When manually building reactions, you will need to pass in a pointer to the set_all_do
function of a claimed interface.

	
info

	The input number and state that trigger this reaction

	
dio_state

	Mask reaction to this dio state

	
action

	Function called by this reaction

	
transition_only

	If the reaction will respond to non-transition events

	
run_in_background

	If reaction will run as background thread

	
auto_response

	If reaction will automatically reply

	
set_do

	Helper to set digital output state

	
bgstart(current_state)

	Call start as a background thread

	Returns

	The thread of the background action

	
respond(returned_data)

	Automatically respond to frames, if requested

	Parameters

	returned_data – A list of DIO states. If none, no states will be set

	
start(current_state)

	Run the action in a blocking manner

	Parameters

	current_state – The current state of the dio

	
class pykarbon.terminal.Session(timeout=0.01, automon=True)

	Attaches to terminal serial port and allows reading/writing from the port.

Automatically performs port discovery on linux and windows. Then is able to take
ownership of a port and perform read/write operations. Also offers a method for setting
various mcu control properties.

There is additional support for registering a function to certain DIO states, or input pin
transitions. When the interface receives a registered event, it will call the function and
optionally set the digital outputs to the returned state.
This features requires running the session with automonitoring enabled.

Digital IO events will be recorded in the data queues, while configuration information will
overwite the ‘info’ dictionary.

	Parameters

	
	timeout (int, optional) – Time until read attempts stop in seconds. (None disables)

	automon (bool, optional) – Automatically monitor incoming data in the background.

When ‘automon’ is set to ‘True’, this object will immediately attempt to claim the terminal
connection that it discovers. Assuming the connection can be claimed, the session will then
start monitoring all incoming data in the background.

This data is stored in the the session’s ‘data’ attribute, and can be popped from the queue
using the ‘popdata’ method. Additionally, the entire queue may be purged to a csv file using
the ‘storedata’ method – it is good practice to occasionally purge the queue.

	
interface

	pykarbon.hardware.Interface

	
pre_data

	Data before it has been parsed by the registry service.

	
data

	Queue for holding the data read from the port

	
isopen

	Bool to indicate if the interface is connected

	
info

	Dictionary of information about the configuration of the mcu.

	
registry

	Dict of registered DIO states and function responses

	
bgmon

	Thread object of the bus background monintor

	
bgmonitor()

	Start monitoring the terminal in the background

Uses python threading module to start the monitoring process.

	Returns

	The ‘thread’ object of this background process

	
check_action(line, prev_line=None)

	Check is message has an action attached, and execute if found

	Parameters

	
	line – Dio state formatted as ‘[0-1]{4} [0-1]{4}’

	prev_line – The previously known state of the bus

	
close()

	Release the interface so that other session may interact with it

Any existing background monitor session will also be closed. If this session re-opens the
connection, background monitoring will need to be manually restarted with the ‘bgmonitor’
method.

	
get_previous_state(index=-1)

	Returns the previous state of the digital io

	
monitor()

	Watches port for incoming data while connection is open.

The loop is predicated on the connection being open; closing the connection will stop the
monitoring session.

	Returns

	The method used to stop monitoring. (str)

	
open()

	Claim the interface (only one application may open the serial port)

	
parse_line(line)

	Parse a non-dio line into mcu configuration info

	
popdata()

	If there is data in the queue, pop an entry and return it.

Uses queue behavior, so data is returned with ‘first in first out’ logic

	Returns

	String of the data read from the port. Returns empty string if the queue is empty

	
print_info()

	Prints out mcu configuration information

	
pushdata(line: str)

	Add data to the end of the session queue.

NOTE: Does not push empty strings, and strips EoL characters.

	Parameters

	line – Data that will be pushed onto the queue

	
readline()

	Reads a single line from the port, and stores the output in self.data

If no data is read from the port, then nothing is added to the data queue.

	Returns

	The data read from the port

	
register(input_num, state, action, **kwargs)

	Automatically perform action upon receiving data_id

Register an action that should be automatically performed when a certain digital input
state is read. By default, this action will only be performed when the digital input
first transitions to a state – subsequent bus reads will be ignored:

Example

>>> Session.register(1, 'low', action)

Input 1 : 1 –> 0 (Execute Action)

Input 1 : 0 –> 0 (Do nothing)

Input 1 : 0 –> 1 (Do nothing)

Input 1 : 1 –> 0 (Execute Action)

Actions should be a python function, which will be automatically wrapped in a
pykarbon.terminal.Reactions object by this function. When the passed action is called
Reactions will try to pass it the current dio state as the first positional argument.
If thrown a TypeError, it will call the action without any arguments.

There is addtional support for masking input events with a particular bus state. That
is, if an input event occurs, but the bus does not match the state, the action will
not be executed.

Example

>>> Session.register(1, 'high', action, dio_state='---0 ---1')

Input 1 : 0 –> 1, Bus State: 0011 1111 (Do nothing)

Input 1 : 1 –> 1, Bus State: 0000 1111 (Do nothing)

Input 1 : 1 –> 0, Bus State: 0000 1111 (Do nothing)

Input 1 : 0 –> 1, Bus State: 0000 1111 (Execute Action)

Note

Bus state format is digital output 0-4 space digital input 0-4. Dashes are ‘don’t care’

	Parameters

	
	dio_state (str) – Shorthand for the state of the dio, a dash will ignore the value.

	action – The python function that will be performed.

	kwargs – transition_only: Act only when a state is true by transition (Default: True)
dio_state: Mask performing action with dio state (Default: —- —-)
run_in_background: Run action as background task (Default: True)
auto_response: Automatically reply with returned message (Default: True)

	Returns

	The ‘Reaction’ object that will be used in responses to this data_id

	
registry_service()

	Check if receive line has a registered action.

If the receive line does have an action, perform it, and then move the data
into the main data queue. Otherwise, just move the data.

	
set_all_do(states)

	Sets all digital outputs based on a list of states

	Parameters

	states (list) – A list of ‘1’, ‘0’, or ‘-’ corrospponding to the state of each output.
Note: A ‘-’ will skip setting the corrosponding output

Example

>>> set_all_do(['0', '0', '0', '0']) # turn all outputs off

	
set_do(number, state)

	Set the state of a single digital output

Maps different input formats into a unified format, and then calls a write method that sets
a single output.

Example

>>> set_do(0, True)
>>> set_do('two', 0)

	
set_param(parameter: str, value: str, update=True, save_config=True)

	Sets a mcu configuration parameter

	Parameters

	
	parameter – Paramter to change

	value – Parameter will be set to this value

	update – Call update info to reflect param changes

	Returns

	one or zero to indicate sucess or failure

	
storedata(filename: str, mode='a+')

	Pops the entire queue and saves it to a csv.

This method clears the entire queue: once you have called it, all previously received
data will no longer be stored in the sessions ‘data’ attribute. Instead, this data will
now reside in the specified .csv file.

Each received dio event has its own line of the format: outputs,inputs.

By default, if a file that already exists is specified, the data will append to the end of
this file. This behavior can be changed by setting ‘mode’ to any standard ‘file.write’ mode.

	Parameters

	
	filename – Name of file that will be created.

	mode (str, optional) – The file write mode to be used.

	
update_info(print_info=False)

	Request configuration information from MCU

	Parameters

	print (bool, optional) – Print out info after update. (Default: False)

	
update_voltage(timeout=2)

	Update the system input voltage

	Parameters

	timeout (optional) – Set how long, in seconds to wait for voltage readout.

	
write(command)

	Write an arbitrary string to the serial terminal

	
pykarbon.terminal.hardware_reference(device='K300')

	Print useful hardware information about the device

Displays hardware information about the DIO device, such as pinouts.
The pinouts assume that the user is facing the front of the device, and that the fins
are pointed up.

	Parameters

	device (str, optional) – The karbon series being used. Defaults to the K300

i2c

Read and write using the MCUs i2c bus

This module allows you to read and write from any accessible device on the Karbon’s I2C bus.
It is not reccommend that you write to any of the existing devices unless you’re absolutely certain
of what you’re doing.

Note

Existing devices:

	K700:

	0x21 – Onboard PoE
0x28 – Modbay PoE (Expansion ONLY)
0x40 – Humidity/Temperature Sensor
0x60 – Cryptographic Secure Element

	K300:

	0x20 – Onboard PoE
0x60 – Cryptographic Secure Element

Example

import pykarbon.i2c as pki

device_id = 0x21
register = 0x99

dev = pki.Device(device_id)

val = dev.read(register)

print("Read {} from {}", val, register)

This will connect to the microcontroller via the serial interface, and then attempt to read the
value of register 0x99 from the device at address 0x21.

	
class pykarbon.i2c.Device(device_id, timeout=0.05)

	Opens an I2C device and exposes read/write commands for that device.

Device implements a simple blocking read/write methodology to talk with i2c devices.
It not neccesary to close one device before opening and using another – however, you may only
talk with one device at a time.

	Parameters

	
	device_id (int) – The device address to read/write.

	timeout (float, optional) – The maximum amount of time, in seconds, that the function will
block while waiting for a response.

	
read(reg, length=1)

	Reads data from the selected register

	Parameters

	
	reg (int) – The device register to read.

	len (int) – The number of bytes (uint8) to read.

	Returns

	The hex value read from the device.
val (str): String returned, if any

	Return type

	val (int)

	
verified_write(reg, data)

	Writes data to the selected register and verifies that it was written correctly

	Parameters

	
	reg (int) – The device register to write

	data (int) – The data to write

	Returns

	True if passed, False if failed

	Return type

	success (bool)

	
write(reg, data)

	Writes data to the selected register

	Parameters

	
	reg (int) – The device register to write.

	data (int) – The data to write.

	Returns

	None if successful, error response if failed

hardware

Discovery and control of hardware interfaces.

You can use this module when you want things to go as fast as possible, or when you just need serial
read/write hooks for your own application.

Example

import pykarbon.hardware as pkh

with pkh.Interface('terminal') as dev:
 dev.cwrite('version')
 line = ''
 while not line:
 line = dev.cread()[0].strip('\n\r') # Strip termination, only reading one line.

print(line)

This will discover and open a connection with the serial terminal interface on the MCU. It then
asks the microntroller to report it’s firmware version before polling for the response.

	
class pykarbon.hardware.Hardware

	Has methods for performing various hardware tasks: includes port discovery, etc.

	
ports (

	obj:’dict’): The two virtual serial ports enumerated by the MCU.

	
static check_port_kind(port_name: str) → str

	Checks if port is used for CAN or as the terminal

	Parameters

	port_name – The hardware device name.

	Returns

	‘can’ or ‘terminal’

	Return type

	The kind of port

	
get_ports() → dict

	Scans system serial devices and returns the two Karbon serial interfaces

	Returns

	A dictionary with the keys ‘can’ and ‘terminal’ assigned hardware port names.

	
class pykarbon.hardware.Interface(port_name: str, timeout=0.01)

	Hardware subclass interface – controls interactions with the karbon serial interfaces.

	
port

	The hardware name of the serial interface

	
ser

	A serial object connection to the port.

	
sio

	An io wrapper for the serial object.

	
multi_line_response

	The number of lines returned when special commands are transmitted.

	
claim()

	Claims the serial interface for this instance.

	
cread(nlines=1)

	Reads n lines from the serial terminal.

	Parameters

	nlines (int, optional) – How many lines to try and read

	Returns

	The combined output of each requested read transaction

	
cwrite(command: str)

	Writes a command string to the serial terminal and gets the response.

	Parameters

	command – Action to be executed on the mcu

	Returns

	None

	
release()

	Release the interface, and allow other applications to use this port

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pykarbon	

 	
 	
 pykarbon.can	

 	
 	
 pykarbon.core	

 	
 	
 pykarbon.hardware	

 	
 	
 pykarbon.i2c	

 	
 	
 pykarbon.pykarbon	

 	
 	
 pykarbon.terminal	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	action (pykarbon.can.Reactions attribute)

 	(pykarbon.terminal.Reactions attribute)

 	auto_response (pykarbon.can.Reactions attribute)

 	(pykarbon.terminal.Reactions attribute)

 	
 	autobaud() (pykarbon.can.Session method)

 	(pykarbon.pykarbon.Karbon method)

B

 	
 	baudrate (pykarbon.can.Session attribute)

 	bgmon (pykarbon.can.Session attribute)

 	(pykarbon.terminal.Session attribute)

 	
 	bgmonitor() (pykarbon.can.Session method)

 	(pykarbon.terminal.Session method)

 	bgstart() (pykarbon.can.Reactions method)

 	(pykarbon.terminal.Reactions method)

C

 	
 	Can (class in pykarbon.core)

 	can (pykarbon.pykarbon.Karbon attribute)

 	canwrite (pykarbon.can.Reactions attribute)

 	check_action() (pykarbon.can.Session method)

 	(pykarbon.terminal.Session method)

 	check_port_kind() (pykarbon.hardware.Hardware static method)

 	claim() (pykarbon.hardware.Interface method)

 	
 	cleanout() (pykarbon.core.Terminal method)

 	close() (pykarbon.can.Session method)

 	(pykarbon.pykarbon.Karbon method)

 	(pykarbon.terminal.Session method)

 	command() (pykarbon.core.Terminal method)

 	cread() (pykarbon.hardware.Interface method)

 	cwrite() (pykarbon.hardware.Interface method)

D

 	
 	data (pykarbon.can.Session attribute)

 	(pykarbon.terminal.Session attribute)

 	
 	data_id (pykarbon.can.Reactions attribute)

 	Device (class in pykarbon.i2c)

 	dio_state (pykarbon.terminal.Reactions attribute)

F

 	
 	format_message() (pykarbon.can.Session static method)

G

 	
 	get_ports() (pykarbon.hardware.Hardware method)

 	get_previous_state() (pykarbon.terminal.Session method)

 	
 	get_state() (pykarbon.core.Terminal method)

 	grepall() (pykarbon.core.Terminal method)

H

 	
 	Hardware (class in pykarbon.hardware)

 	hardware_reference() (in module pykarbon.can)

 	(in module pykarbon.terminal)

 	
 	hexify() (in module pykarbon.can)

I

 	
 	info (pykarbon.terminal.Reactions attribute)

 	(pykarbon.terminal.Session attribute)

 	input_states() (pykarbon.core.Terminal method)

 	Interface (class in pykarbon.hardware)

 	
 	interface (pykarbon.can.Session attribute)

 	(pykarbon.terminal.Session attribute)

 	isopen (pykarbon.can.Session attribute)

 	(pykarbon.terminal.Session attribute)

K

 	
 	Karbon (class in pykarbon.pykarbon)

M

 	
 	monitor() (pykarbon.can.Session method)

 	(pykarbon.terminal.Session method)

 	
 	multi_line_response (pykarbon.hardware.Interface attribute)

O

 	
 	open() (pykarbon.can.Session method)

 	(pykarbon.pykarbon.Karbon method)

 	(pykarbon.terminal.Session method)

P

 	
 	parse_line() (pykarbon.terminal.Session method)

 	popdata() (pykarbon.can.Session method)

 	(pykarbon.terminal.Session method)

 	port (pykarbon.hardware.Interface attribute)

 	pre_data (pykarbon.can.Session attribute)

 	(pykarbon.terminal.Session attribute)

 	print_command() (pykarbon.core.Terminal method)

 	print_info() (pykarbon.terminal.Session method)

 	
 	pushdata() (pykarbon.can.Session method)

 	(pykarbon.terminal.Session method)

 	pykarbon.can (module)

 	pykarbon.core (module)

 	pykarbon.hardware (module)

 	pykarbon.i2c (module)

 	pykarbon.pykarbon (module)

 	pykarbon.terminal (module)

R

 	
 	Reactions (class in pykarbon.can)

 	(class in pykarbon.terminal)

 	read() (pykarbon.i2c.Device method)

 	(pykarbon.pykarbon.Karbon method)

 	readall() (pykarbon.core.Terminal method)

 	readline() (pykarbon.can.Session method)

 	(pykarbon.terminal.Session method)

 	register() (pykarbon.can.Session method)

 	(pykarbon.terminal.Session method)

 	
 	registry (pykarbon.can.Session attribute)

 	(pykarbon.terminal.Session attribute)

 	registry_service() (pykarbon.can.Session method)

 	(pykarbon.terminal.Session method)

 	release() (pykarbon.hardware.Interface method)

 	remote_only (pykarbon.can.Reactions attribute)

 	respond() (pykarbon.can.Reactions method)

 	(pykarbon.terminal.Reactions method)

 	run_in_background (pykarbon.can.Reactions attribute)

 	(pykarbon.terminal.Reactions attribute)

S

 	
 	send() (pykarbon.core.Can method)

 	send_can() (pykarbon.can.Session method)

 	ser (pykarbon.hardware.Interface attribute)

 	Session (class in pykarbon.can)

 	(class in pykarbon.terminal)

 	set_all_do() (pykarbon.terminal.Session method)

 	set_do (pykarbon.terminal.Reactions attribute)

 	set_do() (pykarbon.terminal.Session method)

 	set_high() (pykarbon.core.Terminal method)

 	
 	set_low() (pykarbon.core.Terminal method)

 	set_param() (pykarbon.terminal.Session method)

 	show_info() (pykarbon.pykarbon.Karbon method)

 	sio (pykarbon.hardware.Interface attribute)

 	sniff() (pykarbon.core.Can method)

 	start() (pykarbon.can.Reactions method)

 	(pykarbon.terminal.Reactions method)

 	storedata() (pykarbon.can.Session method)

 	(pykarbon.terminal.Session method)

 	stringify() (in module pykarbon.can)

T

 	
 	Terminal (class in pykarbon.core)

 	
 	terminal (pykarbon.pykarbon.Karbon attribute)

 	transition_only (pykarbon.terminal.Reactions attribute)

U

 	
 	update_info() (pykarbon.terminal.Session method)

 	
 	update_voltage() (pykarbon.core.Terminal method)

 	(pykarbon.terminal.Session method)

V

 	
 	verified_write() (pykarbon.i2c.Device method)

 	
 	voltage (pykarbon.core.Terminal attribute)

W

 	
 	write() (pykarbon.can.Session method)

 	(pykarbon.i2c.Device method)

 	(pykarbon.pykarbon.Karbon method)

 	(pykarbon.terminal.Session method)

 nav.xhtml

 Table of Contents

 		
 The Pykarbon Project

 		
 Intro

 		
 Pykarbon: Hardware Made Possible

 		
 Automatic Operation

 		
 The Toolbox

 		
 pykarbon.pykarbon

 		
 pykarbon.core

 		
 pykarbon.terminal & pykarbon.can

 		
 pykarbon.hardware

 		
 Quickstart

 		
 Prerequisites

 		
 Installation

 		
 Usage

 		
 API

 		
 pykarbon

 		
 core

 		
 can

 		
 terminal

 		
 i2c

 		
 hardware

_static/ajax-loader.gif

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

